
1. Introduction
According to NOAA National Centers for Environmental Information (NCEI, 2021) statistics on the 2021 U.S. 
Billion-Dollar Weather Disasters, severe storms have caused, on average over the past decade, about 84 fatalities 
and $16.8 billion economic losses each year. Scientists have made significant strides toward improving the accu-
racy of convective-scale forecasts (Clark et al., 2021; Hu et al., 2021; Skinner et al., 2018; Stensrud & Gao, 2010; 
Zhang, Minamide, et al., 2019; Zhang, Stensrud, & Zhang, 2019). However, the accuracy of severe weather fore-
casts still suffers due to the inaccurate initial conditions for numerical weather prediction (NWP) models and the 
complex non-linear interactions between processes of different length scales. More accurate initial conditions can 
significantly improve convective-scale NWP, although other issues, such as the fidelity of microphysics schemes, 
may still limit the predictability of convective scale weather events (Sun & Zhang, 2016; Yano et al., 2018).

To provide better initial conditions for convection-allowing models (CAMs), data assimilation (DA) methods 
require observations with higher spatial and temporal resolution. Usually, conventional observations (e.g., surface 
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variables, especially thermodynamic variables. As a result, short-term severe weather forecasts can be improved 
in terms of rotational tracks and storm strength.
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observing stations) only provide information about the pre-storm environment. They have little impact on repre-
senting ongoing storm structure, and thus, their impact on CAMs is significantly limited by the sparser temporo-
spatial density of these data. Therefore, the assimilation of radar and geostationary satellite observations with 
high temporospatial resolution in DA has received more attention in the past two decades. For example, the US 
Weather Surveillance Radar—1988 Doppler (WSR-88D, Crum et al., 1993) network can provide information 
about storm wind and hydrometeors at a resolution of approximately 1 km and a time frequency of 4–5 min. The 
Advanced Baseline Imager (ABI) on board the Geostationary Operational Environmental Satellite—R Series 
(GOES-R) (Schmit et al., 2017) can provide information on temperature, humidity, and wind at 5–10 km resolu-
tion and various time intervals from 5 to 60 min.

In recent years, numerous studies have been made to assess the impact on forecast of DA methods that incorporate 
radar and satellite observations into CAMs (e.g., Aksoy et al., 2009; Dowell et al., 2011; Gao & Stensrud, 2014; 
Gao et al., 2004; Honda et al., 2018; Johnson et al., 2015; Jones et al., 2015, 2016; Minamide & Zhang, 2019; 
Polkinghorne & Vukicevic, 2011; Wang & Wang, 2017; Wheatley et al., 2015; Zhang et al., 2016, 2018; Zhang, 
Minamide, et al., 2019; Zhang, Stensrud, & Zhang, 2019). These studies have demonstrated that assimilating 
radar and satellite observations can improve the prediction of high-impact weather events, ranging from severe 
thunderstorms (e.g., Jones et  al.,  2016; Zhang, Stensrud, & Zhang,  2019) to tropical cyclones (e.g., Honda 
et al., 2018; Zhang, Minamide, et al., 2019). The assimilation of radar observations, especially radial velocity and 
reflectivity, enables construction of the three-dimensional internal storm structure (Clark et al., 2021; Dowell & 
Wicker, 2009; Gao & Stensrud, 2014; Gao et al., 2004). The assimilation of satellite observations can also play an 
important role in improving the prediction of storms over areas where surface and radar observations are limited, 
such as oceans or regions where complex terrain can block radar beams (Fierro et al., 2016, 2019; Jones et al., 
2013, 2015, 2016, 2020).

National Severe Storms Laboratory's (NSSL's) Warn-on-Forecast System (WoFS, Jones et al., 2020), one of the 
experimental systems that focuses on short-term forecasting applications, provides reasonable estimates of the 
initial conditions by optimally combining forecast backgrounds and observations. In the 2021 NOAA Hazardous 
Weather Testbed (HWT) Spring Forecasting Experiment (SFE, Clark et  al.,  2021), the assimilation of radar 
observations from WSR-88D and satellite observations from GOES-R helped to establish the foundation for good 
performance of the WoFS. The satellite observations used in HWT/SFE 2021 include information on nonprecip-
itating clouds and environmental conditions for all-sky. Thus far, however, the benefits of assimilating lightning 
data provided by the GOES-R series to the accuracy of WoF predictions has been limited. The Geostationary 
Lightning Mapper (GLM) lightning product (Goodman et al., 2013) is widely recognized as a proxy for the occur-
rence of deep moist convection (Schultz et al., 2011). In particular, prior studies found that total lightning flash 
rates are indicative of convective cores having >10 m s −1 updraft velocity and graupel (Carey & Rutledge, 1998; 
Deierling & Petersen, 2008; MacGorman et al., 1989, 2005, 2011; Wiens et al., 2005). Therefore, assimilating 
lightning observations into the WoFS is expected to help improve the forecast of severe thunderstorms, especially 
for the convection initiation phase.

Most previous studies focused on lightning data assimilation (LDA) have applied empirical relationships in 
convective parameterization schemes to force lightning observations from ground-based platforms to promote 
convection at observed lightning locations. However, this approach is not appropriate for CAMs that can 
partially resolve convective features without parameterization schemes. Following the operational availability 
of GOES-16/17 GLM products since 2018, only a few studies have been performed on the assimilation of real 
GLM products into convective scale NWP models. Fierro et al. (2019) and Hu et al. (2020) implemented an LDA 
method in a variational framework by assimilating pseudo water vapor content. Basically, their study showed 
the potential ability of LDA to achieve improvement of short-range forecasts for a specific set of severe weather 
events. However, they also underscored that (a) the added value of LDA to forecasts remains minor in areas with 
good coverage of radar observations and (b) LDA typically produces overestimation of >30-dBZ reflectivities. 
This is because the treatment of areal coverage of non-zero flash densities in their LDA scheme does not change 
significantly with time, resulting in unrealistic progressive enhancement of convection. As shown below, our new 
method may have potential to improve the treatment of areal coverage of non-zero flash densities.

Compared to the variational DA method with a deterministic member forecast, use of the ensemble Kalman 
Filter (EnKF) has obvious advantages from two aspects. First, the EnKF technique introduces flow-dependent 
background error covariances, which allow more accurate spatial and cross-variable correlations between model 



Earth and Space Science

PAN AND GAO

10.1029/2022EA002378

3 of 24

states and directly observed variables. Second, an ensemble of forecasts is able to generate probabilistic guid-
ance for severe weather events (Skinner et al., 2018; Flora et al., 2019). Only a few studies, namely Kong et al. 
(2020, K20 hereafter) and Gan et al. (2021, G21 hereafter), attempted to assimilate lightning observations from 
spaceborne sensors for real data application using an EnKF framework. K20 adopted an empirical relationship 
between FED and graupel mass or volume, and demonstrated the potential benefit of the LDA to short-term 
severe weather forecasts using the Community Gridpoint Statistical Interpolation EnKF (GSI-EnKF, Whitaker 
and Hamill 2002) system. They highlighted that the positive correlations between FED and model state variables, 
especially temperature and moisture, are the most important factors leading to a better forecast. Although more 
intense convective updrafts were produced by positive correlations between FED and vertical velocity, those 
updrafts had little influence on the forecast. In G21, the LDA scheme adopted an empirical relationship between 
flash rate and maximum vertical velocity. They suggested a similar conclusion, that convective scale short-term 
forecasts have been improved primarily because of increased convergence and divergence of wind fields in the 
low and upper levels, respectively.

None of the aforementioned studies examined the impact of LDA on the forecast of a tornadic supercell event. 
The present study adopts the assumption used in Fierro et al. (2019) but improves on three aspects. These aspects 
include: (a) using FED instead of “flash origin density,” which does not consider the areal extent of the flashes; 
(b) extending the LDA algorithm to use flash rate information to create pseudo dewpoint temperature observa-
tions; (c) combining the assimilation of FED with other observations used by the WoFS. The primary motivation 
of this research is to leverage the potential for GLM FED to aid the development of properly placed convection 
with minimal overestimation in NWP models. In this new research, relative humidity is added based on the FED 
information which adds moisture information in a way which should help reduce over-prediction biases.

Although the new LDA scheme developed here is designed as a real-time application for future SFEs, as a 
proof-of-concept, this research will first focus on a single case study: the 24 May 2021 severe weather event over 
northwest Kansas, where a large supercell with multi-vortex tornadoes occurred, but was not well predicted by 
the WoFS. This type of severe weather event is different from that in K20 and G21, which are better described 
as MCSs rather than supercells. Our initial focus here is on how to use GLM/FED in an optimum way through 
sensitivity experiments. The preliminary results show that the assimilation of FED, using the GSI-EnKF system, 
improves the short-term forecast of both tornadic and nontornadic supercells. Section  2 describes the WoFS 
system, the FED observations, and the LDA scheme. Section 3 introduces the experiment configurations and 
verification method used in this study. In Section 4, sensitivity experiments examine the impact of assimilat-
ing GLM FED observations using different spatial resolutions, accumulation windows, and cutoff radii of FED 
observations. Section 5 describes qualitative and quantitative comparisons of forecast quality for each assimila-
tion experiment under a quasi-real time situation, followed by conclusions in Section 6.

2. Warn-On-Forecast System and LDA Scheme
2.1. Overview

The WoFS system is an on-demand ensemble DA and forecasting system designed to provide guidance of hazard-
ous weather events, such as tornadoes, damaging winds, large hail, and flash flooding. The current WoFS uses 
a customized Advanced Research Weather Research and Forecasting Model (WRF-ARW) based on version 
3.8.1 (Skamarock et al., 2008), coupled with the GSI-based EnKF system (Jones et al., 2016, 2020; Yussouf & 
Knopfmeier, 2019; Yussouf et al., 2020). The GSI-EnKF system assimilates radar radial velocity and reflectiv-
ity data (Johnson et al., 2015; Wang & Wang, 2017), satellite cloud water path (CWP, Jones et al., 2013) and 
GOES-16 ABI radiance (Jones et al., 2020). This research extends the system to include an LDA method that 
assimilates FED as an indicator of strong ongoing convection.

As mentioned in the first section, one advantage of the EnKF method is that the flow dependent error covariances 
can be estimated so that prognostic variables, including three-dimensional wind fields, temperature, humidity, 
pressure, diabatic heating, and hydrometeors can be updated without using forward operators that directly link 
model variables with observations. The configurations used in this research are the same as those used in the 
real-time WoFS run during the SFE 2021 but with the additional assimilation of GLM FED observations, which 
are described later. The WoFS assimilates available conventional data every 1-hr; radar and satellite observations 
every 15-min starting from 1500 UTC and cycling until 0300 UTC. All observations are assimilated into the 
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WRF model with a regional domain having 3-km grid spacing and 51 vertical levels. The regional domain covers 
an area of 301 × 301 grid points (900 × 900 km), with its center determined by the Day 1 Convective Outlook 
from NOAA Storm Prediction Center. The initial and boundary conditions for the WoFS 36-member ensemble 
are provided by an experimental 36-member HRRR ensemble (HRRRE, Benjamin et al., 2016). The initial condi-
tions use 1-hr forecasts from 1400 UTC HRRRE analyses, and the boundary conditions are generated by using 
forecasts of the analyses of the first 9 HRRRE members at 1200 UTC. Then, 6- and 3-hr forecasts are launched at 
the top and the bottom of each hour, respectively. For more details about parameterization schemes, see Skinner 
et al. (2018); Wheatley et al. (2015); Mansell et al. (2010). A comprehensive description of the additive noise 
and adaptive inflation methods used to maintain diversity among members in the real-time WoFS can be found in 
Dowell and Wicker (2009); Anderson (2009) and Hu et al. (2019). The same settings for these inflation methods 
are used in this study.

2.2. Description of Observations Used in the WoFS for SFE 2021

This study examines the added value of an LDA scheme to the WoFS real-time performance. Therefore, observa-
tions used in the WoFS real-time experiments are also incorporated in this study. The WoFS system for SFE 2021 
assimilates conventional observations hourly and radar radial velocity and reflectivity, CWP, and all sky radi-
ance at 15-min intervals. The conventional observations contained in hourly files include temperature, dewpoint, 
winds, and pressure available at the surface and upper levels. For real-time application, the conventional obser-
vations are assimilated using a 15-min lag, for example, using the conventional data available at 1500 UTC in 
the 1515 UTC analysis. Oklahoma and west Texas Mesonet observations (Brock et al., 1995) that have a denser 
spatial resolution are assimilated as a complement to traditional observations in PrepBUFR format (https://rda.
ucar.edu/docs/formats/bufr/BUFR_PrepBUFR_User_Guide_v1.pdf).

Radial velocity observations are used within a range of 150 km from the radar and are thinned to a 5-km Cartesian 
grid using Cressman objective analysis (Cressman, 1959) prior to the DA procedure. For reflectivity observa-
tions, NSSL provides an alternative three-dimensional quality-controlled option, called Multi-Radar Multi-Sensor 
(MRMS) reflectivity (Smith et al., 2016), which has horizontal resolution at 0.01° (approximately 1 km) and 
vertical resolution ranging from 250 m to 1 km from sea level surface to 20 km mean sea level. Akin to radial 
velocity observations, MRMS reflectivities are thinned to 5-km horizontal resolution.

The satellite observations assimilated into the WoFS include radiances from 6.2 to 7.3 μm infrared bands, respec-
tively measuring upper- and low-level water vapor content, and CWP, which is one of the cloud property products 
from GOES-16/17 representing vertically-aggregated hydrometeors. These observations are analyzed to the same 
MRMS 5-km grid for cloudy areas and a 15-km grid for clear sky. A parallax correction is applied to satellite data 
for cloudy pixels defined by the L2 cloud height product. More detailed descriptions about all assimilated obser-
vations, including their associated errors and localization radii in SFE 2021 can be found in Jones et al. (2020), 
except that vertical localization radii, for conventional observations ranges from 0.8 to 0.85 in natural log pressure 

𝐴𝐴
[

−ln (𝑃𝑃∕𝑃𝑃0)
]

 . Here 𝐴𝐴 𝐴𝐴0 = 1,000 hPa is the reference pressure.

2.3. GLM Flash Extent Density and the Assimilation Scheme

The GLM instruments carried by GOES-16/17 are able to measure optical signals emitted by lightning discharges 
over most of the Americas and central and eastern Pacific Ocean. It has a variable pixel pitch that prevents the 
horizontal resolution of ground samples from being finer than 14 km over the CONUS, and makes most ground 
samples have horizontal resolution less than 10 km (Bruning et al., 2019). The detection efficiency of the GLM 
is highly dependent on the time of day. The expected flash detection efficiency exceeds 70% for daytime and 90% 
for nighttime. A detection, also called an event in GLM data sets, is recorded at individual pixels that exceed 
background within the 2-ms integration period once non-lightning artifacts are recognized and eliminated. A 
single event and simultaneous events at adjacent pixels are clustered into a group that could be considered as 
a single lightning pulse. Finally, a GLM flash may consist of one or more sequential groups occurring within 
16.5 km and within 330 ms. More details about non-lightning artifacts filtering and GLM products can be found 
in Rudlosky et al. (2019) and Mach (2020).

In this study, the method and the open-source python package called glmtools, developed by Bruning et al. (2019), 
is adopted to derive FED observations. Instead of simply accumulating flashes on each grid, this method considers 

https://rda.ucar.edu/docs/formats/bufr/BUFR_PrepBUFR_User_Guide_v1.pdf
https://rda.ucar.edu/docs/formats/bufr/BUFR_PrepBUFR_User_Guide_v1.pdf
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a connection between events, groups, and flashes because GLM events are not sampled with even spacing. It takes 
into account the actual spatial footprint of each GLM event and is able to fill the gaps between pixels. Observed 
events with an even distribution could be counted on a target grid matching the GLM detector configuration. 
However, from the geostationary perspective, evenly distributed events are unevenly distributed on a regular grid 
(such as latitude-longitude grid) because of longitude convergence toward the pole, leading to overlapping events 
in a single grid on the equator side and gaps on the pole side. The remapping technique introduced by Bruning 
et  al.  (2019) is superior to regular image remapping techniques which usually do not consider the situations 
described above. Basically, accumulating the GLM data has the following six steps: (a) reconstruction of the 
event-flash linkage from the GLM L2 data; (b) computation of fixed grid coordinates matching to geolocated 
GLM L2 data, including lightning ellipsoid removal and fixed grid navigation; (c) spatial aggregation of each 
event, and accumulation of flash and group properties; (d) partitioning of aggregated events by the target grid; 
(e) accumulation on the target grid using the pre-accumulated properties; (f) producing a time accumulation by 
simple addition. By applying this method to raw 20-s GLM data, it is possible to derive FED observations for any 
spatial resolution or time window. This also allows sensitivity experiments to examine the impact of assimilating 
derived FED data with different resolutions and accumulation windows.

The derived GLM FED observations are assimilated into the WRF simulations using the following procedure: 
whenever FED > 0 at a given latitude-longitude coordinate, pseudo dewpoints are provided for model levels 
(between cloud base to 650 hPa) associated with the location of the observed FED based on Lawrence (2005) 
Equation 8:

�d =
�
[

ln
(

RH
100

)

+ ��air
� + �air

]

� − ln
(

RH
100

)

− ��air
� + �air

 (1)

Based on Teten's suggestions, the values of 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 are 17.269 and 237.3 respectively. 𝐴𝐴 𝐴𝐴air is the air temperature 
in Celsius, and 𝐴𝐴 RH is the pseudo relative humidity (RH) calculated via a sigmoid equation that is a function of 
the FED observation:

RH =
(

𝑋𝑋 +
𝑌𝑌

1 + 𝑒𝑒𝐶𝐶−𝐷𝐷∗FED

)

% (2)

The philosophy behind the equation is very similar to Reisner and Jeffery (2009) in which a hyperbolic tangent 
equation was used to avoid sharp variations in cloud variables. This Sigmoid function is a function widely used 
in machine-learning related research for binary classification (Gagne II et al., 2019). It is monotonic, continuous, 
and differentiable and is limited to a range from 0 to 1. These features make it ideal as a bridge between FED and 
the amount of pseudo relative humidity (Figure 1). This function can also be used to eliminate possible disconti-
nuities associated with the step function to prevent the LDA scheme from generating discrete pseudo observations 
at adjacent points. With the sigmoid function, it is convenient to select the asymptotic value (through 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴  , and 

𝐴𝐴 𝐴𝐴 ), and the slope (through 𝐴𝐴 𝐴𝐴 ) of the function. The red line in Figure 1 gives a more intuitive perception of the 
relationship between pseudo RH and FED observations used in this study. C, D, X, and Y are specified as 5.25, 
2.85, 65, and 30 respectively. These values are chosen to make the sigmoid function shift to the right and have 
a steeper changing rate and are determined by a trial-and-error technique to make sure they produce reasonable 
RH values based on information from FED. The value of pseudo RH within a layer between cloud base and 
650 hPa is proportional to the value of FED. It is minimized when FED is near 0 and is maximized when FED 
approaches and exceeds four flashes per unit area per min (hereafter fl area −1 min −1). The derived pseudo RH 
value is constrained to lie between 65% and 95%. By combining a steeper RH slope with such asymptotic values, 
it is expected that the possibility of isolated convection initiation and its ensuing development will be increased, 
while limiting the generation of spurious convection. The observation error of derived dewpoint temperature, 𝐴𝐴 𝐴𝐴𝑇𝑇d 
was described in Lin and Hubbard (2004) and can be written as:

𝑢𝑢𝑇𝑇d = 2

[

(

𝜕𝜕𝑇𝑇d

𝜕𝜕𝑇𝑇air

)2

𝑢𝑢
2 (𝑇𝑇air ) +

(

𝜕𝜕𝑇𝑇d

𝜕𝜕RH

)2

𝑢𝑢
2(RH)

]1∕2

 (3)

where 𝐴𝐴 𝐴𝐴 (𝑇𝑇air ) is the background error for the forecast model and 𝐴𝐴 𝐴𝐴(RH) is set to 0.05.
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3. Experimental Design and Verification
3.1. Experiment Configuration

The experiment configurations are the same as the WoFS configurations used in SFE 2021, except that the assim-
ilation of radar and satellite observations starts from 1800 UTC 24 May 2021 and the assimilation cycles end at 
2200 UTC, the same day. The EnKF DA cycles between 1500 and 1800 UTC only assimilate conventional obser-
vations, and this is considered as a spin-up process. All experiments have exactly the same initial and boundary 
conditions at 1800 UTC. This allows the evaluation of the impact of LDA on the forecast of severe weather events 
with minimum computational resources. Few differences have been found in the subjective comparison between 
forecasts from this setup and those from the real-time runs for the 24 May 2021 event (not shown).

As mentioned in Section 2c, the FED observations can be derived with any spatial resolution and time period 
by using raw 20-s GLM data. The performance of LDA could be sensitive to the spatial resolution or accumula-
tion strategy for FED observations. Therefore, two sets of sensitivity experiments using FED observations with 

Figure 1. Frequency of the flash extent density (FED) (fl area −1 min −1) observations using different accumulation strategies (blue bars) at 2030 UTC, 24 May 2021. 
The red line represents pseudo relative humidity as a function of FED value.
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different spatial resolutions, accumulation windows, and horizontal and vertical localization radii are considered 
by this study (Table 1). These sensitivity experiments only assimilate GLM FED observations using the WoFS 
configuration described above.

The experiments in the first set are named RES_12  km_5  min, RES_6  km_5  min, RES_3  km_5  min, 
RES_3 km_1 min, RES_3 km_3 min, and RES_3 km_10 min, respectively, based on the spatial resolution and 
accumulation window used in the FED derivation. The frequency of the FED observations valid at 2030 UTC 
is also shown in Figure 1. As expected, more observations are generated with higher spatial resolution using 
the super-resolution remapping technique. On the other hand, observations are more likely concentrated around 
lower values when the accumulation window is greater. This is because peak values are smoothed over the longer 
time window. Additionally, the number of points with FED > 3 fl area −1 min −1 in RES_3 km_1 min is much less 
than that in RES_3 km_3 min and RES_3 km_5 min due to information loss using such a short accumulation 
window. The optimal resolution and accumulation window is determined by the object-based verification method 
(Flora et al., 2019; Skinner et al., 2018) that is briefly described in the following subsection.

The sensitivity experiments in the second set examine the impact of the localization radius for GLM FED assim-
ilation. The horizontal radius ranges from 6 to 12 km and the vertical radius ranges from 1.0 to 0.7 in the log 
pressure unit. So four more experiments are performed and named as RADII_h12v1.0, RADII_h12v0.7, RADII_
h6v1.0 and RADII_h6v0.7 (Table 1). Experiments in this set are based on the configuration of RES_3 km_5 min 
that has the best performance in the first set of sensitivity experiments.

Three experiments in the final set (Table 2) are performed to assess the potential benefits from the assimilation of 
FED observations, once the optimal parameters (i.e., spatial resolution and accumulation window for FED deri-
vation, horizontal and vertical localization) are determined by the two previous sensitivity experiments. The first 
one is the “Control” experiment, which only assimilates conventional observations. The second is the “Retro” 
experiment, which assimilates conventional observations from hourly prepbufr file and Oklahoma Mesonet, radar 
radial velocity and reflectivity observations, and GOES-16 CWP, 6.2 and 7.3 μm infrared radiances. This experi-
ment acts as a retrospective run to match the performance of the WoFS in its real-time runs. The final experiment 
is called “RetroFED”. It assimilates pseudo dewpoint temperature observations derived from FED observations, 

Experiment
Spatial resolution of GLM 

FED (km)
Accumulation window of 

GLM FED (min)
Horizontal localization 

(km)
Vertical 

localization

RES_12 km_5 min 12 5 9 0.85

RES_6 km_5 min 6 5 9 0.85

RES_3 km_5 min 3 5 9 0.85

RES_3 km_1 min 3 1 9 0.85

RES_3 km_3 min 3 3 9 0.85

RES_3 km_10 min 3 10 9 0.85

RADII_h12v1.0 3 5 12 1.0

RADII_h12v0.7 3 5 12 0.7

RADII_h6_1.0 3 5 6 1.0

RADII_h6v0.7 3 5 6 0.7

Table 1 
Experiment Configurations for Different Sensitivity Experiments

Experiment
Conventional observations 
(PrepBUFR + Mesonet) Radial velocity + reflectivity

GOES-16 
radiance + CWP

GOES-16 
GLM FED

Control Y N N N

Retro Y Y Y N

RetroFED Y Y Y Y

Table 2 
Assimilated Observation Types for Three Different Experiments: Control, Retro, and RetroFED
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in addition to satellite, radar, and conventional observations. In Section 4, we further describe the analyses and 
3-hr forecasts initialized at 2030 UTC, as well as object-based verification.

3.2. Verification

To quantitatively evaluate the quality of ensemble forecasts in each experiment, this study adopts the object-based 
verification technique developed by Skinner et al. (2018, S18 hereafter). Strong mid-level rotation signatures that 
are highly related to severe weather were identified as objects and were used for evaluation. Similar to S18, single 
thresholds based on the 99.95th percentile value in both the real-time WoFS forecasts of SFE 2021 and MRMS 
verification data set were used to identify objects for this case. Observed mid-level rotation objects are identified 
by determining locations where 2–5 km MRMS azimuthal wind shear is greater than 0.0025 s −1, while WoFS 
mid-level rotation objects are defined as the locations where predicted 2–5 km updraft helicity (UH) is greater 
than 40.74 m 2 s −2 (Skinner et al., 2018). Objects are created every 5-min starting from 15 min into the forecast 
by collecting ±15 min azimuthal wind shear or UH. Once isolated objects are identified, they are merged if the 
distance between objects is less than 10 km.

Predicted and observed objects are matched using the total interest score (Davis et al., 2006; also see Equation 
1 in S18), which takes into account spatial and timing displacement. To remove edge artifacts, the object-based 
verification is calculated over a 286 × 286 gridpoint domain. A qualified match must have a total interest score 
greater than 0.2, where the maximum searching distance is 40 km and the maximum searching time is 15 min. 
The matching procedure allows predicted objects to be classified by four performance metrics: “hits,” “misses,” 
“false alarms,” and “correct nulls,” allowing calculation of contingency table statistics for comparing forecast 
skills among experiments.

4. Sensitivity Experiments
4.1. Sensitivity Experiments for the FED Observations

The first set of sensitivity experiments only assimilates FED observations with different spatial resolutions and 
accumulation windows. Figure 2 gives an example of assimilated FED observations at 2030 UTC. Since the 
super-resolution resampling takes into account the actual spatial footprint of GLM events and fills the gaps 
between consecutive flash events, resampling at finer spatial resolution should not significantly change the FED 
values but it will change the observation density (as shown in Figures 2a–2c). Conversely, a greater accumulation 
window may smooth small time-scale features, and a smaller accumulation window may lose information about 
consecutive flash events while using the 15-min assimilation cycles. Therefore, an inappropriate accumulation 
window may eventually lead to lower peak values of GLM FED observations. This conclusion is proved by 
comparing the FED observations accumulated over different time lengths (Figures 2a, 2d, and 2f). Compared 
with RES_3 km_5 min, RES_3 km_10 min provides a wider coverage and a smaller peak value (blue circle in 
Figure 2d vs. Figure 2a). On the other hand, RES_3 km_1 min provides a limited coverage and a smaller peak 
value (blue circle in Figure 2f vs. Figure 2a). The FED observations of RES_3 km_5 min and RES_3 km_3 min 
(Figure 2a vs. Figure 2e) are comparable and preferable.

While the qualitative comparison of FED observations using different derivation strategies shows substantial 
differences, it is important to quantify the different impacts of assimilating these observations and to determine 
the skill of subsequent forecasts. The FED observations are assimilated into the WoFS with 15-min assimilation 
cycles starting at 1800 UTC, followed by 3-hr forecasts initiating from 2000, 2030, 2100, 2130, and 2200 UTC. 
The localization radius used here is initially set to 9 km horizontally and 0.85 log pressure vertically. The quality 
of predicted rotation objects is assessed using contingency table statistics and performance diagrams related to 
probability of detection (POD), false alarm rate (FAR), critical success index (CSI), and frequency bias. The 
closer the values of POD and CSI are to 1, the better the forecast. The perfect prediction score is located in the 
upper right corner of the table. Figure 3 shows 30–180-min aggregated forecast performance for each experi-
ment that assimilates FED with various spatial resolutions. The overall quality of 60-min rotation forecasts from 
experiments assimilating observations with various resolutions is fairly reasonable, as evidenced by CSI values 
exceeding 0.25. RES_3 km_5 min performs better than RES_6 km_5 min and RES_12 km_5 min in terms of 
CSI or frequency bias for the first 120-min forecast (Figures 3a–3d). On average, RES_3 km_5 min produces 
CSIs less than 0.2 and frequency biases of approximately 1.2 for the 150- and 180-min forecasts, comparable to 
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RES_6 km_5 min and RES_12 km_5 min (Figures 3e and 3f). But RES_12 km_5 min produces some individual 
forecasts associated with CSIs greater than 0.3.

The differences in performance among the experiments with different accumulation windows is relatively small 
and mixed. The skills gradually decrease as a function of forecast time (Figure 4). RES_3 km_5 min performs 
best at the 90-min (Figure 4c) and 150-min (Figure 4e), while RES_3 km_3 min outperforms RES_3 km_5 min 
at 30-min (Figure  4a), 120-min (Figure  4d), and 180-min (Figure  4f). RES_3  km_1  min generally performs 
the worst among all experiments due to the narrow accumulation window and the limited coverage. Overall, 
RES_3 km_3 min or RES_3 km_5 min performs better than the other two experiments. Thus the 3-km spatial 
resolution and 5-min accumulation window will be selected as the optimal parameters for generating FED obser-
vations in the following experiments.

4.2. Sensitivity Experiments to Ensemble Covariances Localization

The second set of sensitivity experiments aim to select the optimal localization radius for assimilating FED derived 
pseudo dewpoint temperature. In order to construct multiple assimilation configurations with different horizontal 
and vertical localizations, each horizontal radius selected from 6, 9, and 12 km could be combined with each 
vertical radius selected from 0.7, 0.85, and 1.0 in the log pressure unit. This implies a total of nine experiments 
could be performed. But for simplicity, only five experiments are discussed here, named as RES_3 km_5 min 
(that uses 9 km and 0.85), RADII_h12v1.0, RADII_h12v0.7, RADII_h6v1.0 and RADII_h6v0.7. The impact of 
changing horizontal and vertical localization on the forecast can be easily separately tested.

Figure 2. Derived flash extent density (FED) observations at 2030 UTC, 24 May 2021 from the raw FED data for (a) 3-km resolution and 5-min window, (b) 6-km 
resolution and 5-min window, (c) 12-km resolution and 5-min window, (d) 3-km resolution and 10-min window, (e) 3-km resolution and 3-min window, and (f) 3-km 
resolution and 1-min window. The blue circles highlight the huge difference between the experiments using different accumulation windows.
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Figure 3. Performance diagram of (a) 30-min, (b) 60-min, (c) 90-min, (d) 120-min, (e) 150-min, (f) 180-min forecasts for 
the sensitivity experiments RES_12 km_5 min (blue), RES_6 km_5 min (green), and RES_3 km_5 min (red) aggregated 
over 180 min forecasts initialized at 2000 UTC, 2030 UTC, 2100 UTC, 2130 UTC, and 2200 UTC, 24 May 2021. Small dots 
represent scores of individual ensemble members, and large dots represent the ensemble mean from each experiment.
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Figure 4. Same as Figure 3, but for the sensitivity experiments RES_3 km_1 min (purple), RES_3 km_3 min (green), 
RES_3 km_5 min (red), and RES_3 km_10 min (blue).
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By comparing experiments using the same vertical localization (Figure 5, purple vs. green, or blue vs. pink), 
we see that larger horizontal localization leads to slightly worse rotation predictions. However, larger vertical 
localization (represented by a smaller value) leads to slightly better rotation predictions (Figure 5, purple 
vs. blue, or green vs. pink). Assimilation using smaller horizontal or larger vertical localization typically 
increases the POD or decreases the FAR. The 2-hr forecast launched from 2000 UTC (Figure 6) provides an 
example of how different localization combinations can affect short-term forecasts of convection. Among 
the five experiments, improvements of POD and FAR are observed when a smaller horizontal localization 
and a larger vertical localization are applied. Objects associated with south bias are partially corrected, and 
an additional object is generated (red box in Figure 6). In addition, prediction of the northernmost rotation 
object in Kansas is not good in all experiments, and the performance among all experiments is quite close. 
Generally speaking, RADII_h6v0.7 slightly outperforms other experiments. Thus, the combination of the 
horizontal localization of 6 km and the vertical localization of 0.7 is selected as the configuration for the 
following case study.

5. Results
5.1. The Event Overview

Four long-lived supercells developed in western Kansas on 24 May 2021. Composite radar reflectivity at 2200 
UTC shows all of these supercells, along with warnings issued and severe weather reports collected by the 
National Weather Service (Figure 7a). The first supercell appeared in western central Kansas (Storm 1) between 
1830 and 2300 UTC. The second supercell (Storm 2) was located southwest of Storm 1 between 1900 and 2230 
UTC. The third one (Storm 3), which was located north of Storm 1 between 1930 UTC and 0000 UTC and 
produced several tornadoes during this period, was not forecasted in the real-time WoFS run. The last supercell 
(Storm 4) developed between Storm 1 and Storm 2 by 2030 UTC, split around 2215 UTC and was continually 
developing and propagating to the south until 0500 UTC. At 2200 UTC, Storm 3 had already produced several 
tornadoes and was associated with reflectivity greater than 50 dBZ. Corresponding FED observations at 2200 
UTC (Figure 7b) show that Storm 3 generated the highest FED values (about 8 fl area −1 min −1) compared to the 
other thunderstorms (about 6 fl area −1 min −1). It is usually true that more frequent flash rates serve as an indicator 
of strong convection (Liu et al., 2012).

5.2. Comparisons of the Experiment Results

By 2030 UTC 24 May, Storm 3 was well-organized and produced multiple tornadoes in the prior half hour. It 
continued to produce tornadoes until 2330 UTC, followed by its dissipating stage. However, the realtime WoFS 
run initiated from 2000 to 2030 UTC failed to predict this long-lived supercell. The forecasts launched after 2100 
UTC also claimed a rather low probability of less than 40% of generating strong rotation for Storm 3. To assess 
the impact of assimilating additional GLM FED data on the forecast of thunderstorms, the evolutions of the 
rotation objects for all ensemble members during the 3-hr forecast period starting from 2030 UTC as well as its 
initial storm environment are generated.

An examination of Figure 8 shows significant differences in predicting rotation objects among the three experi-
ments Control, Retro, and RetroFed. Since Storm 2 entered its dissipating stage after 2200 UTC, it is not discussed. 
Obvious differences between Control and Retro can be found in the forecast of Storm 1, 3, and 4. For the first 
hour prediction, the Control experiment predicts widely distributed rotation objects in west Kansas (Figure 8a). 
Some ensemble members place the supercells between observed Storm 1 and Storm 3/4, while some ensemble 
members place the supercells further south than observed Storm 4 (Figure 8a). Although Control successfully 
predicts rotation near Storm 3 by 2130 UTC in 1/3 of the ensemble members, the locations are widely distributed 
and deviate from the observed object due to the lack of the assimilation of high-density observations. Retro gener-
ates a more concentrated distribution of Storm 1 and 4 around their actual locations, but appears to miss Storm 3 
in most of the ensemble members (Figure 8b). RetroFED maintains the concentrated distribution for the forecasts 
of Storm 1 and Storm 4, while generating more instances of Storm 3 in northwest Kansas (Figure 8c). Compared 
to the observed object, the coverage of Storm 3 in this forecast has an eastward bias.
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Figure 5. Same as Figure 3, but for the sensitivity experiment RADII_h12v1.0 (purple), RADII_h12v0.7 (blue), RADII_
h6v1.0 (green), RADII_h6v0.5 (pink), and the reference experiment RES_3 km_5 min (red).



Earth and Space Science

PAN AND GAO

10.1029/2022EA002378

14 of 24

Transitioning to the second and the third hour forecasts, all experiments 
exhibit similar biases as the 1-hr forecast. Control still generates overly 
diverse ensemble forecasts (Figures 8d and 8g), while Retro generates rota-
tion objects near Storm 3 for 3–6 ensemble members (Figures 8e and 8h). 
The members of RetroFED that successfully predict Storm 3 place the rota-
tion objects to the south of the observed object at 2230 UTC (Figure 8f), and 
a little east of the object at 2330 UTC (Figure 8i). Compared to the other 
experiments, RetroFED also produces fewer instances of Storm 1 at 2330 
UTC, which actually began dissipating around 2300 UTC. It is worth noting 
that all experiments predict an eastward propagation of Storm 4 which does 
not agree with the observations.

By focusing on 0–3-hr forecasts of UH greater than 60 m 2 s −2, we find that 
all experiments generate a long swath of probabilities >50% associated with 
Storm 4 (Figure 9). The high probability values in all experiments initially 
correspond well with the observed mid-level azimuthal shear track, but they 
show a displacement at later times due to the faster storm propagation in the 
ensemble forecasts for the southernmost storm (Storm 4). Because of the 
dispersive distribution of convection among the ensemble members, Control 
produces a wider swath of probability for Storm 4 compared to Retro and 
RetroFED (Figures 9a, 9d, and 9g). However, there is no probability swath 
near Storm 1, and a rather low-probability (10%–20%) swath further south 
of Storm 3 that was associated with several tornadoes. While Retro does not 
generate any UH probability swath close to the observed track of Storm 3 at 

2030 UTC, it does forecast high UH probabilities greater than 80% associated with Storm 1. This storm did not 
produce any tornadoes, but did produce a few hail events at a later time (Figure 9b). Retro also generates two 
separate UH probability swaths associated with Storm 3 for the forecasts initiated at 2100 and 2130 UTC, but 
the maximum probability values for these two swaths do not exceed 70% for Storm 3 (Figures 9e and 9h). With 
respect to RetroFED, all three UH probability swaths are generated (Figures 9c, 9f, 9i). The southern two swaths 
(i.e., Storm 1 and Storm 4) match well with corresponding azimuthal shear tracks, hail and tornado reports (not 
shown). Similar to Control and Retro, a fast-motion bias of Storm 4 still exists in RetroFED. The swath of Storm 
3 has a maximum UH probability greater than 60% in the forecast from 2030 UTC, and around 80% in the fore-
casts from 2100 to 2130 UTC. The only issue of the RetroFED forecast is that the UH swath is slightly south 
biased, as compared to the observations. Later forecasts with more assimilation cycles fail to correct this spatial 
displacement error.

To understand the reason for improvements to the prediction of the Kansas supercells in RetroFED, an assess-
ment of the impact of assimilating radar and satellite observations in Retro and additional FED observations in 
RetroFED is needed. The analyzed ensemble mean precipitable water (PW) valid at 2030 UTC shows several 
significant differences in the vertically accumulated moisture (Figure 10). Both Retro and RetroFED success-
fully create moist air with PW > 1.5 inches at the locations of the ongoing convection at the analysis time, 
but Control only creates such an amount of PW for storm 4, and its coverage is relatively small. A band with 
PW > 1.3 inches lying along a southwest-northeast direction is seen in all experiments. However, PW values 
between Storm 1 and Storm 3 are somewhat decreased in Retro. Since water vapor is concentrated at lower 
levels, the boundary layer inflow from the south and southeast (see hodograph in Figure 11) transports less 
water vapor and less latent heat into the area where Storm 3 should be initiated, reducing the probability of 
generating strong convection.

To further evaluate the environment in which Storm 3 initiated, skew-T diagrams at 2030 UTC just south of 
Storm 3 are analyzed for all three experiments (Figure 11). The skew-T profiles represent the ensemble mean 
of the WoFS forecast and are averaged over a 30 × 30-km area centered on the location indicated by the red 
dots in Figure 10. Compared with Control, the dewpoint temperature below 650 hPa in Retro is overall lower 
as expected (Figure 11b vs. Figure 11a). At the same time, the assimilation of FED alleviates this problem to 
some degree, and even adds more water vapor to the layer between 500 and 700 hPa. In addition to changes 
in moisture, the air temperature in Retro has also changed. In Retro, the lapse rate between the surface and 

Figure 6. Predicted rotation objects derived from the ensemble forecasts 
valid at 2200 UTC for 2-hr forecasts initiated at 2000 UTC 24 May 2021 for 
different localization radii. Each ensemble member is plotted as a different 
color, and the gray shading represent observed Multi-Radar Multi-Sensor 
rotation objects at the same time. Red boxes highlight the improvement of 
experiments using smaller horizontal localization radii.
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800 hPa is clearly decreased compared with Control. This extra warmth aloft 
raises the level of free convection from 850 to 800 hPa in Retro, increases the 
convection inhibition value of the lowest 100-hPa mixed layer from −25.2 
to −70.1 J kg −1, decreases the convective available potential energy of the 
lowest 100-hPa mixed layer from 2006.4 to 972.3 J kg −1, thereby creating 
a more stable boundary layer. Assimilation of FED observations is able to 
restore the atmospheric instability to the level seen in Control (1,899.8 J kg −1, 
Figure 11c). As a result, RetroFED likely sustains Storm 3 in its correspond-
ing region because the environment is more favorable to thunderstorm devel-
opment compared to Retro.

Aside from thermodynamic conditions, dynamic mechanisms are also key 
factors for triggering strong convection. An examination of the hodographs 
in Figure 11 show that all experiments produce strong speed and directional 
shear, which are conditions favorable to producing a rotating updraft. The 
strong speed shear can tilt a storm and vertically displace the updraft from 
the downdraft, allowing the storm to persist for a longer lifetime. On the 
other hand, strong directional shear in the lower troposphere typically gener-
ates high values of helicity and is important to tornadogenesis. Although 
Control  has a thunderstorm-favorable environment in terms of instability 
and wind shear, it places the lifting process in different locations. This is 
likely the reason why Control produces unorganized tracks among ensemble 
members, as seen in Figure 8.

To examine the lifting process of Storm 3, vertical cross sections of ensem-
ble mean wind, specific humidity, temperature and vertical vorticity for the 
DA analysis at 2030 UTC are compared among all experiments. The cross 
sections in Figure  12 are made along the propagation direction of Storm 
3. Obviously, Control fails to generate any concentrated lifting mech-
anism, including both vertical motion and vertical vorticity both at 2030 
UTC (Figure 12a), and within the ensuing forecasts. The specific humid-
ity and temperature remain mostly unchanged in the horizontal direction 
for Control. Meanwhile, Retro produces weak vertical motion associated 
with weak vertical vorticity and the large gradient of specific humidity 
(Figure 12b), likely due to the assimilation of radar observations. Although 
the assimilation of radar and satellite observations enforces the lifting mech-
anism at the right location, the surrounding environment unfortunately does 
not support the development of thunderstorms. The analyzed reflectivity 
dissipates immediately once the forecast is launched (not shown). By assim-
ilating additional FED observations, RetroFED not only improves the envi-
ronment, but also strengthens internal vertical motion (Figure 12c). Retro-
FED also generates more abundant water vapor accompanied by the bulge 
of isotherms near the center of Storm 3, indicating that warm moist air is 
being transported upward from near the surface by the updraft. As a result 
of abundant moisture, moderate instability, strong vertical speed and direc-
tional wind shear, and appropriate lifting mechanism, RetroFED eventually 
gives the best forecast of the Storm 3's rotation object among all experiments 
(Figures 8 and 9).

5.3. Object-Based Verification

Similar to the sensitivity experiments, the previously discussed differences and the forecast skills among vari-
ous experiments are evaluated in a quantitative manner using the object-based verification method. Figure 13 
shows 30–180-min forecast performance for rotation objects accumulated over all forecasts launched from 2000, 
2030, 2100, 2130, and 2200 UTC. The overall quality of rotation object forecasts from Retro and RetroFED is 

Figure 7. Multi-Radar Multi-Sensor mid-level reflectivity and flash extent 
density valid at 2200 UTC for 24 May 2021. Storm Prediction Center's 
severe weather event reports (red triangle for tornadoes, green dot for 
hail) and warning (red polygon for tornadoes and blue polygon for severe 
thunderstorms) issued by NWS at this time are shown.
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significantly better than that from Control. The CSI score exceeds 0.55 for the 30-min forecast (Figure 13a) and 
exceeds 0.5 for the 60-min forecast (Figure 13b), for both Retro and RetroFED. Control generates the lowest 
skill throughout the whole 180-min forecast period. For Retro and RetroFED, the increase of FAR, with nearly 
the same level of POD, is the reason for the slight decrease of CSI between the 30- and 60-min forecasts. After 
the 60-min forecast, the POD values for both Retro and RetroFED also start to decrease as a function of forecast 
time (Figures 13c–13e). The decreasing rate of POD for RetroFED is approximately 0.05 per 30 min and is 
faster than that for Retro which is approximately 0.035 per 30 min. However, the rate of increase of FAR for 
RetroFED is smaller than that for Retro. This evolution of POD and FAR is consistent with the finding shown 
in the previous section, where Storm 3 is predicted by RetroFED with the slight south bias, and Storm 1 is 
overpredicted by Retro at a later forecast time. In general, RetroFED outperforms Retro for predicting rotation 
objects at all forecast times, primarily through the improved forecast for Storm 1 and Storm 3. This indicates 
that assimilation of FED observations via pseudo dewpoint temperature has the potential to improve the skill 
of model forecasts.

6. Summary and Conclusions
In this study, a simple DA scheme that indirectly assimilates FED observations into a convection-allowing 
NWP model is developed and examined. Since the raw 20-s GOES-16 GLM data provides three different matri-
ces “flashes,” “groups,” and “events,” the FED observation is derived by considering the relationship between 
flashes, groups, and events within a specified period prior to the analysis time. Then, the actual footprint of 
each GLM event is remapped onto a target grid with a custom resolution. To alleviate possible inaccuracies of 
the derived FED observations, sensitivity experiments are conducted by using various accumulation windows 
and spatial resolutions during the data assembly process. The optimal combination of parameters for deriving 
FED observations is obtained by validating 0–3-hr forecasts of rotation objects. In general, the experiment 
assimilating dense FED observations (3  km) clearly benefits the rotation forecasts for most of the forecast 

Figure 8. Similar to Figure 6, but for predicted rotation objects for 1–3-hr forecasts initiated at 2030 UTC for three 
experiments. The left, middle, and right columns correspond to Control, Retro, and RetroFED, respectively.
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times, compared to those assimilating sparse observations (6 and 12 km). The combination of a finer resolution 
of 3 km and a moderate accumulation window of 5 min (i.e., RES_3 km_5 min) gives the best overall forecast 
performance among the experiments. Thus, this combination is selected for the other experiments conducted in 
this research.

Additional sensitivity experiments are conducted in which different horizontal and vertical localization radii are 
applied to FED observations. The results show that the use of narrower horizontal localization and broader verti-
cal localization in the assimilation of FED partially alleviates the displacement errors of rotation objects in the 
forecast. Additionally, it can generate individual predicted objects that match well with the observed objects in 

Figure 9. Probability of 2–5 km UH greater than 60 m 2 s −2 over 3-hr forecasts initiated at 2030 UTC (a–c), 2100 UTC (d–f), and 2130 UTC (g–i), 24 May 2021 for 
each experiment (each column). Multi-Radar Multi-Sensor 2–5 km azimuthal shear tracks during this period (black shades) are overlaid over the probability plots.
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ensemble members. These improvements slightly increase the POD and decrease the FAR. Among the sensitivity 
experiments, RADII_h6v0.7 uses 6 km and 0.7 as the horizontal and vertical localization radii respectively and 
produces a slightly better performance for the 0–3-hr forecasts.

Once the optimal parameters for retrieving and assimilating FED observations have been determined, three addi-
tional experiments, named as Control, Retro, and RetroFED are performed to assess the value of assimilating 
FED observations into the WoFS. Control only assimilates conventional observations, while Retro assimilates 
radar and satellite observations in addition to conventional observations. The third experiment, RetroFED assim-
ilates FED observations in addition to conventional, radar, and satellite observations. By comparing forecasts 
from Control and Retro, assimilation of radar and satellite data into the WoFS does improve supercell forecasts 
as compared to the assimilation of only conventional observations. Similar results were reported by Wheatley 
et al. (2015) and Jones et al. (2016, 2020). Although significant improvements are observed in Retro compared 
with Control, the forecast can further be improved when additional FED observations are assimilated. Qual-
itatively, three positive aspects are found in RetroFED. The most important one is the enhanced water vapor 

Figure 10. Analyzed ensemble mean precipitable water for (a) Control, (b) Retro, and (c) RedtroFED valid at 2030 UTC, 24 
May 2021. The red dot represents the location which a 30 × 30-km area is centered for the sounding plot in Figure 11. The 
purple line represents the location for the cross section plot in Figure 12. The light gray and dark gray contours are for the 
observed 25 and 40 dBZ composite reflectivity, respectively.
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content that accompanies the boundary layer inflow, which allows that inflow to transport more latent heat into 
the storm,  thus helping to initiate or sustain convection in the appropriate area. The second aspect is related to 
the indirect adjustment of the lower troposphere temperature. Compared with Retro, RetroFED slightly cools the 
atmosphere above the surface, resulting in a steeper lapse rate as well as an unstable environment. Finally, the 
assimilation of FED observations also indirectly intensifies the updraft via flow-dependent error covariances. 
The rich moisture in the lower troposphere, increased instability and enhanced updraft ultimately leads to a 

Figure 11. Skew-T profile from analyzed ensemble mean for (a) Control, (b) Retro, and (c) RetroFED valid at 2030 UTC, 24 May 2021. The skew-T profile is averaged 
over a 30 × 30-km area centered at the location indicated by the red dot in Figure 10. For comparison, the temperature and dewpoint profile of Retro experiment are 
plotted as blue and magenta lines in (a) and (c), respectively.
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stronger development of the tornadic supercell in northwest Kansas and the best forecast skill for both tornadic 
and nontornadic supercells.

Overall, this study demonstrates a new method for the potential for assimilation of FED observations, via 
pseudo dewpoint temperature, to improve the prediction of tornadic supercells on 24 May 2021. However, 
because our initial focus is on how to derive and use GLM/FED in an optimum way through sensitivity exper-
iments, only one case was examined. Thus the findings in this study are only preliminary. Hazardous weather 
events may occur in various synoptic- and meso-scale environments. Future work will focus on the inclusion of 
more cases with different atmospheric conditions, such as frontal systems, dry line systems, and weak forcing 
situations.

Figure 12. Vertical cross section from analyzed ensemble mean of wind (vectors), specific humidity (color shades, in 
g kg −1), temperature (green contours, in F), and vertical vorticity (blue contours in s −1) for (a) Control, (b) Retro, and (c) 
RetroFED valid at 2030 UTC, 24 May 2021. The blue dashed lines represent negative vertical vorticities.
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Figure 13. Same as Figure 3, but for experiments Control (blue), Retro (green), and RetroFED (red).
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Data Availability Statement
For this work, the (WSR-88D Level-II) data (reflectivity factor and radial velocity) used in this research can be 
accessed at http://www.ncdc.noaa.gov/ by filling in locations of radar site and date. The Geostationary Lightning 
Mapper Level 2 Lightning Detection product (GLM-L2-LCFA) can be accessed on date from Amazon Web Services 
S3 Bucket (https://registry.opendata.aws/noaa-goes/) via the Amazon Command Line Interface (https://github.
com/aws/aws-cli.git) or can be browsed by selecting the date and time on https://noaa-goes16.s3.amazonaws.com/
index.html#GLM-L2-LCFA/. The Geostationary Lightning Mapper Tools (glmtools) (Bruning et al., 2019) which 
is used for remapping raw GLM data can be downloaded from https://github.com/deeplycloudy/glmtools.git. 
The community version 1.3 of (GSI-EnKF) data assimilation software can be downloaded from https://dtcenter.
org/community-code/gridpoint-statistical-interpolation-gsi/download. The (WRF) source code version 3.9 
(Skamarock et al., 2008) is publicly available at NCAR/UCAR (https://github.com/wrf-model/WRF).
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